ctrmm.f

ctrmm.f(3)                          LAPACK                          ctrmm.f(3)



NAME
       ctrmm.f -

SYNOPSIS
   Functions/Subroutines
       subroutine ctrmm (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B,
           LDB)
           CTRMM

Function/Subroutine Documentation
   subroutine ctrmm (characterSIDE, characterUPLO, characterTRANSA,
       characterDIAG, integerM, integerN, complexALPHA, complex,
       dimension(lda,*)A, integerLDA, complex, dimension(ldb,*)B, integerLDB)
       CTRMM Purpose:


            CTRMM  performs one of the matrix-matrix operations

               B := alpha*op( A )*B,   or   B := alpha*B*op( A )

            where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
            non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

               op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.

       Parameters:
           SIDE

                     SIDE is CHARACTER*1
                      On entry,  SIDE specifies whether  op( A ) multiplies B from
                      the left or right as follows:

                         SIDE = 'L' or 'l'   B := alpha*op( A )*B.

                         SIDE = 'R' or 'r'   B := alpha*B*op( A ).

           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the matrix A is an upper or
                      lower triangular matrix as follows:

                         UPLO = 'U' or 'u'   A is an upper triangular matrix.

                         UPLO = 'L' or 'l'   A is a lower triangular matrix.

           TRANSA

                     TRANSA is CHARACTER*1
                      On entry, TRANSA specifies the form of op( A ) to be used in
                      the matrix multiplication as follows:

                         TRANSA = 'N' or 'n'   op( A ) = A.

                         TRANSA = 'T' or 't'   op( A ) = A**T.

                         TRANSA = 'C' or 'c'   op( A ) = A**H.

           DIAG

                     DIAG is CHARACTER*1
                      On entry, DIAG specifies whether or not A is unit triangular
                      as follows:

                         DIAG = 'U' or 'u'   A is assumed to be unit triangular.

                         DIAG = 'N' or 'n'   A is not assumed to be unit
                                             triangular.

           M

                     M is INTEGER
                      On entry, M specifies the number of rows of B. M must be at
                      least zero.

           N

                     N is INTEGER
                      On entry, N specifies the number of columns of B.  N must be
                      at least zero.

           ALPHA

                     ALPHA is COMPLEX
                      On entry,  ALPHA specifies the scalar  alpha. When  alpha is
                      zero then  A is not referenced and  B need not be set before
                      entry.

           A

                     A is COMPLEX array of DIMENSION ( LDA, k ), where k is m
                      when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
                      Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
                      upper triangular part of the array  A must contain the upper
                      triangular matrix  and the strictly lower triangular part of
                      A is not referenced.
                      Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
                      lower triangular part of the array  A must contain the lower
                      triangular matrix  and the strictly upper triangular part of
                      A is not referenced.
                      Note that when  DIAG = 'U' or 'u',  the diagonal elements of
                      A  are not referenced either,  but are assumed to be  unity.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
                      LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
                      then LDA must be at least max( 1, n ).

           B

                     B is COMPLEX array of DIMENSION ( LDB, n ).
                      Before entry,  the leading  m by n part of the array  B must
                      contain the matrix  B,  and  on exit  is overwritten  by the
                      transformed matrix.

           LDB

                     LDB is INTEGER
                      On entry, LDB specifies the first dimension of B as declared
                      in  the  calling  (sub)  program.   LDB  must  be  at  least
                      max( 1, m ).

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Further Details:


             Level 3 Blas routine.

             -- Written on 8-February-1989.
                Jack Dongarra, Argonne National Laboratory.
                Iain Duff, AERE Harwell.
                Jeremy Du Croz, Numerical Algorithms Group Ltd.
                Sven Hammarling, Numerical Algorithms Group Ltd.

       Definition at line 178 of file ctrmm.f.

Author
       Generated automatically by Doxygen for LAPACK from the source code.



Version 3.4.2                   Tue Sep 25 2012                     ctrmm.f(3)