PTHREAD_SPECIFIC(3)         Library Functions Manual         PTHREAD_SPECIFIC(3)

       pthread_key_create, pthread_key_delete, pthread_setspecific,
       pthread_getspecific - management of thread-specific data

       #include <pthread.h>

       int pthread_key_create(pthread_key_t *key, void (*destr_function) (void

       int pthread_key_delete(pthread_key_t key);

       int pthread_setspecific(pthread_key_t key, const void *pointer);

       void * pthread_getspecific(pthread_key_t key);

       Programs often need global or static variables that have different values
       in different threads. Since threads share one memory space, this cannot
       be achieved with regular variables. Thread-specific data is the POSIX
       threads answer to this need.

       Each thread possesses a private memory block, the thread-specific data
       area, or TSD area for short. This area is indexed by TSD keys. The TSD
       area associates values of type void * to TSD keys. TSD keys are common to
       all threads, but the value associated with a given TSD key can be
       different in each thread.

       For concreteness, the TSD areas can be viewed as arrays of void *
       pointers, TSD keys as integer indices into these arrays, and the value of
       a TSD key as the value of the corresponding array element in the calling

       When a thread is created, its TSD area initially associates NULL with all

       pthread_key_create allocates a new TSD key. The key is stored in the
       location pointed to by key. There is a limit of PTHREAD_KEYS_MAX on the
       number of keys allocated at a given time. The value initially associated
       with the returned key is NULL in all currently executing threads.

       The destr_function argument, if not NULL, specifies a destructor function
       associated with the key. When a thread terminates via pthread_exit or by
       cancellation, destr_function is called with arguments the value
       associated with the key in that thread. The destr_function is not called
       if that value is NULL. The order in which destructor functions are called
       at thread termination time is unspecified.

       Before the destructor function is called, the NULL value is associated
       with the key in the current thread.  A destructor function might,
       however, re-associate non-NULL values to that key or some other key.  To
       deal with this, if after all the destructors have been called for all
       non-NULL values, there are still some non-NULL values with associated
       destructors, then the process is repeated.  The LinuxThreads
       implementation stops the process after PTHREAD_DESTRUCTOR_ITERATIONS
       iterations, even if some non-NULL values with associated descriptors
       remain.  Other implementations may loop indefinitely.

       pthread_key_delete deallocates a TSD key. It does not check whether non-
       NULL values are associated with that key in the currently executing
       threads, nor call the destructor function associated with the key.

       pthread_setspecific changes the value associated with key in the calling
       thread, storing the given pointer instead.

       pthread_getspecific returns the value currently associated with key in
       the calling thread.

       pthread_key_create, pthread_key_delete, and pthread_setspecific return 0
       on success and a non-zero error code on failure. If successful,
       pthread_key_create stores the newly allocated key in the location pointed
       to by its key argument.

       pthread_getspecific returns the value associated with key on success, and
       NULL on error.

       pthread_key_create returns the following error code on error:

              EAGAIN PTHREAD_KEYS_MAX keys are already allocated

       pthread_key_delete and pthread_setspecific return the following error
       code on error:

              EINVAL key is not a valid, allocated TSD key

       pthread_getspecific returns NULL if key is not a valid, allocated TSD

       Xavier Leroy <>

       pthread_create(3), pthread_exit(3), pthread_testcancel(3).

       The following code fragment allocates a thread-specific array of 100
       characters, with automatic reclaimation at thread exit:

              /* Key for the thread-specific buffer */
              static pthread_key_t buffer_key;

              /* Once-only initialisation of the key */
              static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;

              /* Allocate the thread-specific buffer */
              void buffer_alloc(void)
                pthread_once(&buffer_key_once, buffer_key_alloc);
                pthread_setspecific(buffer_key, malloc(100));

              /* Return the thread-specific buffer */
              char * get_buffer(void)
                return (char *) pthread_getspecific(buffer_key);

              /* Allocate the key */
              static void buffer_key_alloc()
                pthread_key_create(&buffer_key, buffer_destroy);

              /* Free the thread-specific buffer */
              static void buffer_destroy(void * buf)

                                  LinuxThreads               PTHREAD_SPECIFIC(3)